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Abstract 

In this paper we use the ant system optimization metaheuristic to find approximate  

solution to the Multi-objective Linear Programming Problems (MLPP), the advantageous 

and disadvantageous of the suggested method also discussed focusing on the parallel 

computation and real time optimization, it's worth to mention here that the suggested 

method doesn't require any artificial variables the slack and surplus variables are enough, 

a test example is given at the end to show how the method works. 

Keywords: Multi-objective Linear. Programming. problems, Ant System Optimization  

Problems 

Introduction 

The Multi-objective Linear. Programming. problems  is an optimization method which 

can be used to find solutions to problems where the Multi-objective function and 

constraints are linear functions of the decision variables, the intersection of constraints 

result in a polyhedron which represents the region that contain all feasible solutions, the 

constraints equation in the MLPP may be in the form of equalities or inequalities, and the 

inequalities can be changed to equalities by using slack or surplus variables, one referred 

to Rao [1], Philips[2], for good start and introduction to the MLPP. The LP type of 

optimization problems were first recognized in the 30's by economists while developing 

methods for the optimal allocations of resources, the main progress came from George B. 

Dantizag when he introduced the simplex method for solving the MLPP  i.e. finding the 

optimum values of the decision variables and hence the optimum value of the set of 

objective functions and given minimum division about the optimal solution . In real 

world problem simplex method was the first practical useful approach for solving MLPP 

and after it is introduced the number of applications of LP becomes large ranging from 

transportation, assignment, production planning, transshipment…etc.  Although the 

simplex method is the most popular and practical method for solving MLPP  but there are 

other methods introduced by researchers like logarithmic barrier method, affine scaling, 
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and interior methods, one referred to Vanderberi [7] for more information. There are 

many forms for representing the MLPP we will use the following standard (scalar) form 

 

Max   Z
(k)

 (x) = 


n

1j
j

k

j xc ,   k = 1,2,…,K     (1)         

Subject to:            


n

1j
aij xj ≤  bj ,                  i = 1,…,m,   (2) 

             xj  0, j = 1,…,n.     (3) 

Where n represents number of decision variables and m represents number of constraints, 

k the number of objectives, cj, aij, and bi are known constants, now if ( n = m ) then there 

exits one solution (if any) and can be found by solving the system of linear equations (2) 

simultaneously by any known linear algebra method like gauss elimination, gauss siedel, 

… etc , see Bernard [9] for solving system of linear equations , this case ( i.e. n = m) is of 

no interest in optimization theory . The second case raise when m > n it means there are 

(m-n) redundant constraints which can be removed out and go back again to the case of 

(m = n). The last and most important case is when n > m, this case is tackled by LP to 

find the solution in which the Multi -objective function (MOF) is optimum.  

     In this paper we will present another method to move from one vertex to another by 

using the ant system optimization metaheuristic , the search for the optimum basic 

feasible solution by this method will be random and probabilistic in nature, so no 

guarantee will be given that the optimum solution will be found and this leads us to say 

the solution given by ant system will be approximate solution, the advantageous and 

disadvantageous of the suggested method will be discussed later. The literature survey 

shows that some attempts were carried out to find optimum feasible solution using 

random search, most highlighted one is the shadow vertex method Kelner [ 6] and genetic 

algorithm approach Bayoumi [10]. 

Metaheuristic: Algorithms which search for optimal solution using procedures that are 

probabilistic in nature listed under the topic of approximate solution Dorgio [4], Merkle 

[5], these algorithms generally classified into two main types, local search algorithms and 

constructive search algorithms, the local search type repeatedly try to improve the current 

solution by making movement to neighborhood solutions and if the neighborhood 

solution is better than the current solution the algorithm replaces the current one by the 

new one, but if no better neighborhood solution found the search stops. The second type 

(constructive algorithm) generates solution from scratch by adding solution components 

step by step.  
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One of the main disadvantages of above iterative improvement algorithms is that 

they may become stuck in poor quality local optima, so efforts directed to build more 

general purpose techniques for guiding the constructive or local search (heuristic) 

algorithms, these technique are often called metaheuristic and they consist of concepts 

that can be used to define heuristic methods, there are other definitions available to 

metaheuristic, like " general algorithmic frame work which can be applied to different 

(combinatorial) optimization problems with relatively few modifications", in recent 

researches metaheuristic are widely used and organized as the most promising approach 

for attacking hard combinational optimization problems example of metaheuristic 

algorithms are simulated annealing, tabu search, iterated local search, variable 

neighborhood search algorithms, greedy randomized adaptive search procedures, 

evolutionary algorithms, genetic algorithms and the recent metaheuristic found by 

Diorgio [4] called the ant system optimization metaheuristic (and it's variant models) 

abbreviated as ASO. 

 

  Ants in Real world: 

Ant system optimization was inspired from the real ant's behavior, so let us simplify the 

understanding of ant system optimization by taking a fast and brief look on the behavior 

of real ants and how they search for food and communicate between each other. 

A very interesting aspect of the behavior of several ants is their ability to find shortest 

paths between the ant's nest and the food sources , this is done by the help of deposit of 

some ants to a chemical material called pheromone, so if there is no pheromone trails, 

ants move essentially at random, but in the presence of pheromone they have a tendency 

to follow the trail and experiments show that ants probabistically prefer paths that are 

marked by high pheromone concentration, the stronger the pheromone trail in a path then 

this path will have the higher desirability and because ants follow that path they, will in 

turn, deposit more pheromone on the path and they will reinforce the paths , this 

mechanism allows the ants to discover the shortest path, this shortest path get another 

enforcement by noting that the pheromone evaporates after sometime, in this way the less 

promising paths progressively loss pheromone because less and less ants will use these 

paths, for more information for the real ants behavior and the experiments done about the 

ants one refer to Diorgio [4] . 

Artificial Ants for the Multiple objective Linear Programming: 

Researchers try to simulate the behavior of real ants by introducing the artificial ants, 

which are a simple computational agent that tries to build feasible solution to the problem 
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being tackled by exploiting the available pheromone trails and heuristic information, the 

main characteristics of artificial ants are Diorgio [4] : 

Multi-objective decision making refers to making decision in the presence of multiple, 

usually conflicting, objectives. For example,  in the Sales Mix problem is a very popular 

multiple-objective linear programming model, the decision maker (DM) wants to 

minimize the cost, to maximize the profit and to maximize the quality service at the same 

time. 

A multi-objective programming is a particular case of multi-criteria problem. 

Mathematically, can be stated as (1-3) 

In the literature this problem is often referred to as a vector maximum problem 

(VMP). Traditionally there are two approaches for solving (VMP). Here we give a short 

description for these two approaches.  

(i) The first approach is to optimize one of the objectives while appending the 

other objectives to constraint set, so that the optimal solution would satisfy 

these objectives at least up to a predetermined level, ai. the problem in this 

case is given as:  

Max  )x(
j

f


  

Subject to:  0)x(
i

g 


   ,i=1,2,…,m 

ia)x(
i

f 


  ,  i=1,2,…,k   and i ≠ j 

Where: ai is any acceptable predetermined level for objective i. 

(ii) the second approach is to optimize a super-objective function created from the given 

objectives, namely the weighted sum of these objectives, with previously 
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determined weights. This approach leads to the solution of the following problem: 

Max  
i

)x(
i

f
i

w   

Subject to: 0)x(
i

g 


 , i=1,2,…,m 

The weights are usually normalized so that 
i

 wi = 1.  

Any of these approaches leads to a solution which may not be the best or most 

satisfactory one. In the first approach we are sure which one of the objectives will be 

considered as our objective function and which of them will be in the constraints. On the 

other hand, if the decision maker provides us with a ranking of the objectives we are in a 

situation to choose the main objective as objective function. Another problem which face 

this approach is the choice of the acceptable levels ai’s in (3.5) that will result in a non 

empty constraint set in the first attempt for the solution. Also in such approach, may find 

that some of these objectives, which are transformed to the set of constraints, may 

decrease the feasible region or may be out of the feasible region which has no meaning.  

In second approach, the major problem is in determining the proper weights wi,  

i=1,2,…,m. the wi’s sensitive to the levels of a particular objective as well as the levels of 

all other objectives.  

To eliminate the previous difficulties, many methods for multiple objective 

decision making (MIDM) are developed, most of them have taken place within the last 

decade. One of the earliest considerations of multiple objectives was given by [40]. 
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3.2.1. the step Method (STEM). 

The STEP method (STEM) is, perhaps, one of the first linear multiobjective 

techniques to be developed. It was first described as the progressive orientation procedure 

by Benayoun and Tergny. (1984), [52] and later elaborated by Benayoun et al. (1971) [8]. 

The algorithm: [52] , [44]. 

This technique  is based on the premise that the best-compromise solution  has the 

minimum combined deviation from the idle point f
*
. the STEP method is an interactive 

scheme that progressively elicits information from the DM primarily to modify the 

constraint set and to slightly modify the weights. This can be done at the first step by 

constricting a pay-off table displaying values of objective functions at the set x of optimal 

solution of (3.8) before the first interactive cycle.  

Step1: let 
*
i

f  , i=1,2,…,k be the feasible ideal solutions of the following k 

problems:  

Max 


 xtcx)(
i

f  

Subject to: bxA 


 

0

x  ,   i= 1,2,…,k 

As shown in the table below, row i corresponds to the solution vector x
*
 which 

maximizes the objective function 
k
i

f . A 
k
i

f  is the value taken on by the i
th

 objective fi 

when the i
th

 objective fj reaches its maximum 
*
i

f .  
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Table (1): A pay-off table of STEM 

 f1 f2 … fi fk 

f1 
*
i

f  2
1

f  … 
i
1

f  k
1

f  

f2 
1
2

f  *
2

f  … 
i
21

f  k
2

f  

            

fi 
1
i

f  2
i

f  … 
*
i

f  k
i

f  

            

fk 
1
k

f  2
k

f  … 
i
k1

f  *
k

f  

 

Step 2. considered as a calculation phase. At the m
th

 cycle, the feasible solution 

to LP is considered which is the ‘nearest’, in the MINIMAX,sense, to the  ideal solution 

f
*
j: 

Min . 

],x[
-
  

Subject to: iii wxff *)]([ *


  ,    i= 1,2,…,k 

mxx


  

 ≥ 0 

Where x
m

 is the solution set of 0, 


xbxA , plus any constraint added in the 

previous (m-1) cycles, wi give the relative importance of the distances to the optimal. But 

it must be noted that they are only locally effective and are not of overriding importance 

as weights are in the utility method from the jth column in the pay-off table, 
*
i

f  is the 

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 
ISSN 2229-5518 

1707

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 

maximum value of the column and 
min
i

f be the minimum value, then wi are chosen such 

that:  




i

i

i




iw  

Where i  =  0;

2)(

1 *

1

min

*min




























in

i

i

ii fif

cij
f

ff
 

i  = 0;

2)(

1 *

1

*

min*




























in

i

i

ii fif

cij
f

ff
 

Where the cji’s are the coefficients of the jth objective. The value of i  consists of 

two terms:  

 





n

i

andi

ii

ori

ii

cij
f

ff

f

ff

1

min

*min

*

min*

2)(

1
 

Form the first term we can make the following assertion:  

If the value of fi does not vary much form the optimum solution by varying 

x , the 

corresponding objective is not sensitive to the variation in the weighting values. 

Therefore, a small weight wi will become correspondingly larger. The second term 

normalizes the values taken by the objective functions. The i  is used to define in such a 

way that the sum of weights equals to one.  
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This means that different solutions obtained from different weighting strategies 

can be easily compared.  

Step  3: Ask the decision maker to compare (f1 (
*
q

x ), f2 (
*
q

x ),…, fn (
*
q

x ))
t
 with (

*
n

f,,*
2

f,*
1

f  ). 

(a) If the decision maker is satisfied with the current solution, stop- the best – 

compromise solution has been found. 

(b) If there is no satisfactory objectives, stop- no best compromise solution can be 

found by this method. 

(c) If there are some satisfactory objectives, ask the decision maker to select one 

such objective 
*
j

f  and the amount 
*
j

f  to be sacrificed (increased) in exchange 

for an  improvement of some unsatisfactory objectives.  

Step 4: if q= n, stop-no best-compromise solution can be found by this method. 

Otherwise set q= q+1, compute xq 

Where  qxx   1qx    

      }jj,)(xf (x)f andDf)(xf(x)x/f{xx ^1-q

jj

^

j

1q^

j

^

j

-q  
  

The weights should be modified accordingly by setting  




i

i

i




iw  

The go to step 1. 

Step 5. It search for minimum cost feasible solution for the problem being solved (i.e. 

shortest path) 

Step 6. It has a memory storing information about the path followed until the end; this 

stored information can be used to 

     I. Build feasible solution. 
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    II. Evaluate the generated solution. 

    III. Retrace back the path the ant followed. 

Step 7. It has initial state that usually corresponds to a unitary sequence, and one or more 

termination condition. 

Step 8. It starts with the initial state and moves towards feasible states, building its 

associated solution incrementally. 

Step 9. The movement of the artificial ant is made by applying a transition rule, which is 

a function of locally available pheromone trail, heuristic value, the ant private memory, 

and the problem constraints, the transition rules are of probabilistic nature , the most 

general formula is shown below in (4), this formula gives the probability an artificial ant 

found at point ( i ) will go to point ( j ) in the next move, i.e. selecting path (ij), at the nth 

iteration 

                               𝑃𝑅𝑖𝑗
(𝑛)𝑙

𝑘=1 =  
 𝑃ℎ𝑖𝑗

 𝑛−1 
 
𝑎
 𝑦𝑖𝑗  

𝑏

  𝑃ℎ𝑖𝑗
 𝑛−1 

 
𝑎
 𝑦𝑖𝑗  

𝑏
𝑗

𝑙
𝑘=1                            (4) 

where, 

k: Is the number of objective functions; 

𝑃𝑅𝑖𝑗
(𝑛)

 : Is the probability that artificial ant move from point (i) to point (j) at the n
th

 

iteration; 
 

𝑃ℎ𝑖𝑗
(𝑛−1)

 :  Is the net pheromone value along the path (ij) at the end of (n-1)
th

 iteration;  

yij Is the heuristic value (desirability) of the path (ij); 

a, b Are Control variables which determine the relative influence of pheromone trail 

(Phij) and heuristic value (Yij) so when a=0 we depend on heuristic value only in 

calculating the transition rule (4) and when b=0 then we depend on pheromone trail only. 

Usually after calculating all the probabilities of movement to each permissible point, a 

random number is generated (0,1) and the Monte Carlo wheel used to find the 

corresponding point the ant will move to. 

F. The construction procedure ends when any termination condition is satisfied, usually 

when an objective state is reached, or after certain predetermined number of iterations is 

carried out. 

G. After the artificial ant reaches the objective state, the objective function or cost 

becomes obvious, the ants use their memory and trace back the path they follow and 
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update the pheromone trail, there are two methods for updating the pheromone trail 

which are: 

I. During the construction procedure, when an ant move from one point ( or node or state 

or… etc) say point ( i) to another point say (j) it update the pheromone trail immediately; 

this method of updating known as online step – by- step pheromone trail update 

II. The ant allows to update the pheromone trail only after it finishes the path, so the ant 

trace back the traveled path and updates the points it passes through, this method known 

as online delayed pheromone trail update and it is most popular than the first one. 

H. The mechanism of pheromone evaporation which deposited by artificial ants is 

different from the evaporation of real ants pheromone, they usually designed to enable 

ants to forget their history and encourage them to search new places of the solution space, 

the most popular formula for updating pheromone trail is shown bellow 

 

 

ph
n

ij

 = 













 iteration 1)th -(nat  antsby  used (ij) route  theif    T   v)-(1

iteration1)th -(nin  antsby  usednot  dose (ij) route  theif     v)-(1

1-n
1-n

ij

1-n

ij

ph

ph

       (5)

 

Where 0<v<1 represent the evaporation rate which is constant during the iterations, and 

T
(n-1)

 represents how good the food found at the end of iteration (n-1), we can see from 

equation (5) above that all routes will be evaporated first then only the routes that ants 

chose in the iteration will get extra pheromone by quantity T
(n-1)

, the new iteration (n) 

will use the new pheromone distribution to guide the ants in the search of a new solution 

through out the solution space. 

Ant System Optimization: 

There are mainly (5) basic algorithms of the ant optimization metaheuristic, Dorgio [4], 

Ant system, Ant colony system, Max- Min ant system, Ranked –Based ant system, and 

the Best-Worst ant system. This paper will use the ant system to introduce a probabilistic 

method to find approximate solution of the linear programming problems, other methods 

can also be applied but with additional steps to fulfill their requirements. Ant system 

(AS) method which was developed by Dorgio[4], assumed the first ant optimization 

algorithm and it have three variants, they are : I.AS- density, pheromone updated using 

online step-by-step method and a given constant amount of pheromone added each time 

II.AS- quantity, pheromone updated using online step-by-step method but the amount 

added depend on ( Yij). 
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III. As-cycle, the pheromone updated at the end of the cycle using the online delayed 

pheromone update and the quantity added depend on the value of the solution. 

Experiment shows that AS-cycle is the best performance among the other. 

Ant system for linear programming: 

As we saw before, the Lp problem always has (n>m) where (n) represent the number of 

decision variables and (m) represents the number of constraints. To find a solution we 

have to set (n-m) variable equal to zero (i.e. non basic variables ) then solve for the value 

of the rest of variables (i.e. basic variables) which should satisfy all the constraints, then 

pick the one that makes the objective function optimum, to apply the ant system we have 

to shift the search idea and concentrate on non basic variable instead of the basic variable 

so we have to search the space solution that consist of (n!/m!(m-n)!) vertices and 

compare the value of the objective function at each vertex to pinpointed the optimum one 

that satisfies all the constraints. We will use ant system to make such a search. To do so 

let us calculate first (D) which represents the number of non basic variables and can be 

found easily as shown below: 

D= n-m                                          ( 6 ) 

 

As shown in Fig (1), we will release (D) ants from the nest at the beginning of each 

iteration, and each ant will be forced to choose one of the (remaining) decision variables 

according to the transition rule explained earlier but with some modifications, the 

transition rule, which we will apply is shown in equation (7), the variables that the ants 

chose will be assigned as non basic variables and set to zero. 

In Fig (1) D- ants released at each iteration and each ant will in turn choose one variable 

to be non basic variable, ant 1 chose from n variables, ant 2 chose from n-1 remaining 

variables,….., ant D chose from n- D+1 remaining variable 

  

𝑃𝑟𝑖𝑗
(𝑛)

  

 
  Hyph

Hyph

n

j

b

ij

a
n

ij
j

n

j

b

ij

a
n

ij



















)1(

)1(

                            (7) 

Where 

i is the index of the ( D) ant released at each iteration ( not like the original rule where it 

was an index of the point to be moved from). 

J is the index of the decision (n) variables (basic and non basic). 
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1n

ijph  is the pheromone that ant 

(i) will see along the path from the nest to variable (j) at nth iteration . 
rn

ijph  is the probability that ant (i) will chose variable xj as non basic variable when it 

released from the nest. 

Yj is the heuristic value represents how much the variable (xj) is attractive to ants and is 

calculated as shown bellow, the index (i) removed since the heuristic value is the same 

for all ants 

For minimization problems 

 

YJ    =  

















0 = Cj if    

    

0< Cj if c

    0< Cj if

j

1

c

1

i

j        (8)

 

For maximization problems 

 

YJ    =  















0 = Cj if    

    

0< Cj if 
 Cj

1

    0< Cj if

1

 Cj

i

       (9)

 

where Cj is the coefficient of the 

xj in the objective function, to understand how this heuristic work, one should first, 

remember that the heuristic value represents the desirability of the decision variable for 

the ant, secondly, referring to equation (8) above and suppose that we handle a 

minimization problem then we want variables with negative coefficients to be appear in 

the basic variable set, while one with a positive coefficient to be appear with non basic 

variables set in order to minimize he objective function, and this how the function of (Yj) 

works, it gives higher value to the positive coefficients and lower values to the negative 

coefficients, of course this is true since both coefficients are >1, otherwise one should 

first multiply the objective function with suitable constant to ensure that none of the Cj is 

< 1, at last, the coefficients of slack variables are zero in the objective function and we 

use Yj=1 for it. 

 

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 
ISSN 2229-5518 

1713

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 

H
n

j

 = 








iterationnth at   variablenonbasic be  tolejth variab  thechoseant any     when 0

(j) allfor iteration each  of beginning at the     1

 

Hj
n
 is used for two reasons: 

I. To ensure that no variable will be chosen twice during a single iteration to be a non 

basic variable, i.e. no two ants will chose the same variable 

II. To adjust the effect of removing the chosen variables by previous ants in the same 

iteration, on the transition rule calculations. 

Pheromone update: 

After each iteration one should update the pheromone trials used by ants in the iteration 

so that ants in the next iteration make use of the result of the previous iteration results. 

The method that we used in this paper is different from the usual methods of pheromone 

update, this because we face the fact that the solution generated by solving the ( m ) 

equations may be either feasible or infeasible, it is clear that if the solution violate any 

constraints including non negativity constraints it will be considered infeasible; so we 

must test the solution first and decide whether it is feasible or infeasible and according to 

the test results we update the pheromone trails by one of the two methods shown bellow : 

A. feasible solution (reward), when we find a feasible solution, equation (10) shown 

bellow will be used to update the pheromone trails of the paths chosen by the ants 

 

ij

n
n

ij

n

ij
STv phph )1(

)1(

)1( 


                             (10) 

 

Sij= 




  whereelse   0

 variablebasicnon  be  toj) (  variablechose (i)ant  if     1
 

T
(n-1)

 represents the reward that the ants will get when they find feasible solution, this 

rewards go to the ants as an extra pheromone added to the residual pheromone trails after 

evaporation, and this extra pheromone added only to the paths the ants choose in the (n-

1)
th

 iteration, this in turn will make the assigned non basic variables have a bigger chance 

to appear again as non basic variables in next iterations, we suggest two methods for 

evaluating the reward, so if we let the value of the objective function at the end of (n-1)th 

iteration which results in a feasible solution is Z
(n-1)

, then the two methods are: 

I . First method (AS-cycle)  
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T
(n-1 )

  = 












onminimizati    
1

max

)1(

  )1(

z

z

n

n
imization

                          (11) 

This method is better than the second method (will be explained next) since it finds 

feasible solution faster, but we must ensure that Z
(n-1)

 is not equal to zero, and there is no 

sign change in the value of Z
(n-1)

 during the iterations 

II. Second method (AS-density) 

                         T
(n-1)

 = k                         (12) 

 where k is a constant, i.e. the reward the ants get dose not depend on the value of the 

objective function, the ants get the reward since they found a feasible solution and for 

both minimization or maximization problems. 

B. Infeasible solution (punishment), in case the ants find a solution which is infeasible 

(violate one or more constraints) then instead of rewarding ants by assigning extra 

pheromone to the paths they chose from nest to the (D) non basic variables we punish 

them by decreasing the pheromone in the paths they have chosen in addition to the usual 

decrease of pheromone due to evaporation and the following equation will be used to 

update the pheromone. 

                           phph
1)(n

ij
ij

n

ij
)wsv(1



                  (13) 

where 0< w<1 is the punishment factor and represents the percentage of pheromone 

erased as a punishment to the ants because they have chosen paths that lead to an 

infeasible solution. At last one should be careful in choosing the value of both 

evaporation rate and punishment factor to avoid negative values of pheromone, their sum 

should be less than one (i.e. v + w <1). 

Numerical example 

Suppose we have to find the solutions of the following two linear programming 

   Min Z(1)= -x1 -2x2  

   Max Z(2)= -3x1 -x2  

S.T. 

          x1   + x2 = 6 

          2x1 + x2 ≤ 9 

          2x1         ≤ 4 

                    x2 ≤ 5 

          x1 , x2 ≥ 0 
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We obtain the equivalent deterministic programming problem for the above multi- 

objective programming problem by using Eqs. (8) - (10). 

 

This first problem has a solution as: 

Z (1) = -11, x1=1, x2 =5, this solution can be found by using ordinary simplex tableau 

after (2) iterations. And the second problem has a solution as Z (2)= - 10, x1= 2, x2= 4, 

this solution can be found also by using ordinary simplex tableau after (2) iterations. 

To apply our method we have first to change inequalities to equalities i.e. the 

problem become 

         Min Z(1)= - x1 - 2x2  

         S.T. 

          x1   + x2 = 6 

          2x1 + x2 + 𝑥3 = 9 

          2x1                  +𝑥4 = 4 

                    x2                     +𝑥5 = 5 

So our linear programming problems has number of variables 

(n=5), and number of equations (m=4), then   D=5- 4 = 1 

We will use the following data to solve the above linear programming problem: 

Evaporation rate v = 0.1. 

Control variables a= b = 1. 

Initial pheromone for all paths = 100. 

Number of ants D = 1. 

For pheromone update, If ants find feasible solution, we use AS-density method with k 

equal to 20, but if ants find infeasible we use punishment factor equals to 0.25, the Stop 

criteria is when total number of iterations reached or when the upper bound equals the 

lower bound (i.e. optimum solution found), or when lower bound cross the upper band 

(or vise versa) at any time because this means that the problem is unbounded. 

The heuristic value can be found using equation (8) and the result shown in table (1). 

As it is shown in table (1) the heuristic value which represents the desirability of a 

variable to an ant to choose it as a non basic variable is high for negative coefficients of 
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the objective function while for positive coefficients is much less and depend on the 

value of the coefficient this will lead to increasing the chance of the negative coefficient 

to be a non basic variable and when talking about the positive coefficients the less 

positive coefficient has greater chance to be non basic variable than the most positive one 

the slack and surplus variable has the value equal to (1) since their coefficient is zero in 

the objective function. 

For each linear programming problem we applying equation (7) one time since we have 

to release 1 ant in each iteration give us the first set of suggested non basic variable then 

solving the linear programming model for the rest of the variable and repeat this process 

for a predetermined number and we have the result shown in table (2, 3) After each 

iteration we test for feasibility, in case we have feasible solution we use equation ( 10 ) to 

update the pheromone trails ( as rewards) but in case we have infeasible solution we use 

equation (13) to update the pheromone (as punishment). 

 

Table (1) the heuristic value using equation (8) 

 

j C1j Y1j C2j Y2j 

1 -1 1 -3 0.333 

2 -2 0.5 -1 1 

3 0 1 0 1 

4 0 1 0 1 

5 0 1 0 1 

 

 

Min Z(1) = - x1 - 2x2  

         S.T. 

          x1   + x2 = 6 

          2x1 + x2 + 𝑥3 = 9 

          2x1                  +𝑥4 = 4 

                    x2                     +𝑥5 = 5 

Iteration 1 

 

Ph = [100, 100, 100, 100, 100] 

Ant 1 

Pr11
(1)

 =  
100∗1

100∗1+100∗0.5+100∗1+100∗1+100∗1
 = 0.222 
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Pr12
 1 

=  0.111 

Pr13
 1 

=  0.222 

Pr14
 1 

=  0.222 

Pr15
 1 

=  0.222 

 

We select the large probability of ant1 is x1 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

Ph = [65, 90, 90, 90, 90] 
 

Iteration 2 

Ant 1 

Pr11
(2)

 =  
65∗1

65∗1+90∗0.5+90∗1+90∗1+90∗1
 = 0.171 

Pr12
 2 

=  0.118 

Pr13
 2 

=  0.237 

Pr14
 2 

=  0.237 

Pr15
 2 

=  0.237 

 

We select the large probability of ant1 is x2 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

 

Iteration 3 

Ph = [58.5, 58.5, 81, 81, 81] 
Ant 1 

Pr11
(3)

 =  
58.5∗1

58.5∗1+58.5∗0.5+81∗1+81∗1+81∗1
 = 0.177 

Pr12
 3 

=  0.088 

Pr13
 3 

=  0.245 

Pr14
 3 

=  0.245 

Pr15
 3 

=  0.245 

 

We select the large probability of ant1 is x3 this due to this variable in nonbasic and this 

solution is feasible solution and we have the result shown in table (2). 

 

 
Table (2) result of solving the first linear programming model 
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by ant system optimization (ASO) iterations 1,2 result infeasible solution 

 

iteration Z1 X1 X2 

1     -10 0 5 

2 - 4 4 0 

3 -11 1 5 

 

Min Z(1) = - 3 x1 - x2  

         S.T. 

          x1   + x2 = 6 

          2x1 + x2 + 𝑥3 = 9 

          2x1                  +𝑥4 = 4 

                    x2                     +𝑥5 = 5 

Iteration 1 

 

Ph = [100, 100, 100, 100, 100] 

Ant 1 

Pr11
(1)

 =  
100∗0.333

100∗0.333+100∗1+100∗1+100∗1+100∗1
 = 0.077 

Pr12
 1 

=  0.231 

Pr13
 1 

=  0.231 

Pr14
 1 

=  0.231 

Pr15
 1 

=  0.231 

 

We select the large probability of ant1 is x2 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

Ph = [90, 65, 90, 90, 90] 
 

Iteration 2 

Ant 1 

Pr11
(2)

 =  
90∗0.333

90∗0.333+65∗1++90∗1+90∗1+90∗1
 = 0.082 

Pr12
 2 

=  0.178 

Pr13
 2 

=  0.246 

Pr14
 2 

=  0.246 

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 
ISSN 2229-5518 

1719

IJSER © 2013 
http://www.ijser.org 

IJSER



 
 

Pr15
 2 

=  0.246 

 

We select the large probability of ant1 is x1 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

 

Iteration 3 

Ph = [81, 42.25, 81, 81, 81] 
Ant 1 

Pr11
(3)

 =  
81∗0.333

81∗0.333+42.25∗1+81∗1+81∗1+81∗1
 = 0.086 

Pr12
 3 

=  0.135 

Pr13
 3 

=  0.259 

Pr14
 3 

=  0.259 

Pr15
 3 

=  0.259 

 

 

We select the large probability of ant1 is x4 this due to this variable in nonbasic and this 

solution is feasible solution and we have the result shown in table (3). 

 

Table (3) results of solving the second linear programming model 

by ant system optimization (ASO), iterations 1,2 result infeasible solution 

iteration Z2 X1 X2 

1     -12 4 0 

2 - 5 0 5 

3 -10 2 4 

 

In the ant system optimization metaheuristic we did not change any thing else i.e. we 

don’t set the value of the pheromone trials to their initial value instead we use the 

available pheromone trial distribution and start the search for the new optimum objective 

function value. This is more close to practical applications of on line-optimization and of 

course we can't do this in the simplex method, instead we can use sensitivity analysis 

which is available only after doing all the required calculations to find the optimum value 

of the objective function and if it fails then we have to restart the calculation from the 

beginning. 
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Min ∝ 

    ∝ - 0.3614 x1–    0.723x2 +x3                          = 3.975 

    ∝ - 1.916   x1 – 0.6386 x2      + x4                   = 6.386 

           x1         + x2                                               = 6 

          2x1        + x2                              + 𝑥5            = 9 

          2x1                                                    +𝑥6       = 4 

                    x2                                                  +𝑥7  = 5 

We will use the following data to solve the above linear programming problem: 

That number of variables (n=8), and number of equations (m=6), then   D=8- 6 = 2 

Evaporation rate v = 0.1. 

Control variables a= b = 1. 

Initial pheromone for all paths = 100. 

Number of ants D = 2. 

 

Table (4) the heuristic value using equation (8) 

 

j Cj Yj 

1 1 1 

2 0 1 

3 0 1 

4 0 1 

5 0 1 

6 0 1 

7 0 1 

8 0 1 

Iteration 1 

 

Ph = [100, 100, 100, 100, 100, 100, 100,100] 

Ant 1 

Pr11
(1)

 =  
100∗1

100∗1+100∗1+100∗1+100∗1+100∗1+100∗1+100∗1+100∗1
 = 0.125 

Pr12
 1 

=  0.125 

Pr13
 1 

=  0.125 

Pr14
 1 

=  0.125 

Pr15
 1 

=  0.125 
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Pr16
 1 

=  0.125 

Pr17
 1 

=  0.125 

Pr18
 1 

=  0.125 

 

 

We select the large probability of ant1 is x1 this due to this variable in nonbasic 

Ant 2 

Pr21
(1)

 =  
100∗1

100∗1+0 +100∗1+100∗1+100∗1+100∗1+100∗1+100∗1
 = 0.143 

Pr22
 1 

=  0.143 

Pr23
 1 

=  0.143 

Pr24
 1 

=  0.143 

Pr25
 1 

=  0.143 

Pr26
 1 

=  0.143 

Pr27
 1 

=  0.143 

Pr28
 1 

=  0.143 

 

 

 

We select the large probability of ant2 is x3 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

Ph = [90, 65, 90, 65, 90, 90, 90, 90] 
 

Iteration 2 

 

Ant 1 

Pr11
(2)

 =  
90∗1

90∗1+65∗1+90∗1+65∗1+90∗1+90∗1+90∗1+90∗1
 = 0.134 

Pr12
 2 

=  0.097 

Pr13
 2 

=  0.134 

Pr14
 2 

=  0.134 

Pr15
 2 

=  0.134 

Pr16
 2 

=  0.134 

Pr17
 2 

=  0.134 

Pr18
 2 

=  0.134 

 

We select the large probability of ant1 is x2 this due to this variable in nonbasic 

 

Ant 2 
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Pr21
(1)

 =  
90∗1

90∗1+65∗1+0+65∗1+90∗1+90∗1+90∗1+90∗1
 = 0.155 

Pr22
 1 

=  0.112 

Pr23
 1 

=  0.155 

Pr24
 1 

=  0.155 

Pr25
 1 

=  0.155 

Pr26
 1 

=  0.155 

Pr27
 1 

=  0.155 

Pr28
 1 

=  0.155 

 

 We select the large probability of ant2 is x4 this due to this variable in nonbasic and this 

solution is infeasible solution  

We apply the equation (13) in case the ants find a solution which is infeasible then  

Update the pheromone  

phph
1)(n

ij
ij

n

ij
)wsv(1



  

 

Iteration 3 

Ph = [81, 58.5, 58.5, 58.5, 58.5, 81, 81, 81] 
Ant 1 

Pr11
(3)

 =  
81∗1

81∗1+58.5∗1+58.5∗1+58.5∗1+58.5∗1+81∗1+81∗1+81∗1
 = 0.145 

Pr12
 3 

=  0.105 

Pr13
 3 

=  0.105 

Pr14
 3 

=  0.105 

Pr15
 3 

=  0.105 

Pr16
 3 

=  0.145 

Pr17
 3 

=  0.145 

Pr18
 3 

=  0.145 

 

We select the large probability of ant1 is x8 this due to this variable in nonbasic 

 

Ant 2 

Pr21
(1)

 = 
81∗1

81∗1+58.5∗1+58.5∗1+58.5∗1+58.5∗1+81∗1+81∗1+0
 = 0.169 

Pr22
 1 

=  0.123 

Pr23
 1 

=  0.155 

Pr24
 1 

=  0.123 

Pr25
 1 

=  0.123 

Pr26
 1 

=  0.169 

Pr27
 1 

=  0.169 

Pr28
 1 

=  0.169 
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We select the large probability of ant2 is x8 this due to this variable in nonbasic and this 

solution is feasible solution and we have the result shown in table (5). 

 
Table (5) result of solving the multi-objective  programming model 

by ant system optimization (ASO), iterations 1,2  result infeasible solution 

 

iteration ∝ X1 X2 

1 1.22e-15 0 5.5 

2 8.8 e-16 4 0 

3 7.9514 1 5 

 

Conclusion and further work: 

We use the ant system optimization metaheuristic to solve the linear programming 

problems, i.e. finding the optimum values of the decision variables and the objective 

function, to do so we shift the search to find the optimum non basic variables, we made 

some modifications on the equations used in ant system optimization so we can apply it 

to linear programming problems, the modifications include the transition rule and 

pheromone trails update, we also show how we can find the value of the heuristic and its 

relation to the coefficient of decision variables in the objective function equation. The 

solution we expect from the ant system is an approximate solution in general so we show 

how can we estimate how good is the solution and test if it is optimum one by using 

duality theory, we also show how can we use the duality theory to detect the unbounded 

models , the main advantageous of our method is in the sense of parallel computation, on 

line optimization , and less variables handled during the calculations .  
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